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TUTORIAL: INTEGRATION OF PARTIAL DIFFERENTIAL
EQUATIONS

I. Cooling of a ball

We consider a ball of radius R. At t = 0, we take it out of a oven where it was at uniform temperature T} and
we suspend it in the air at temperature T,. We assume that the temperature field 7" in the ball is isotropic (i.e.,
it only depends on 7 in spherical coordinates and on t). Under this assumption, the temperature profile verifies
the following IVP and BVP
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where D is the diffusion coefficient in the ball, \ its thermal conductivity, and « the Newton convection coefficient.

Question 1: We define § =T — Ty, x = r/R, 7 = Dt/R? and ¢ = aR/\. Show that Eq. (1) becomes
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Question 2: We want to solve the above IVP and BVP using a FTCS scheme. We discretize space and time as
follows: x; = jo (j € [0, M] with M§ = 1) and 7, = nh (n € [0, N]).

a. Derive the recurrence relation between 0;-‘“ and the 67's for j > 1. Do not forget to enforce the boundary
condition.

b. For j = 0, the recurrence relation reads (the derivation of this formula is not required):
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Implement the FTCS scheme.

Question 3: We perform an experiment with a ball made of granite, for which A = 3W/m/K, D =
1.6.1075m?/s and R = 10cm. Initially, the ball is at temperature T} = 800°C, while the air is at temper-
ature T, = 20°C. We take the Newton convection coefficient o = 20 W/m? /K. Integrate the PDE numerically
and plot the temperature profile T'(r,t) [not 6(z,7)!] at different times between 0 and 2 hours on the same
graph. Comment.

Question 4: We reproduce the experiment with a ball made of gold, for which A\ = 315W/m/K, D =
1.3.107*m?/s and R = 10cm. Integrate the PDE numerically, plot the temperature profile T'(r,t) at different
times between 0 and 2 hours on the same graph, and confront with the previous experiment.
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Question 5 (bonus): The exact analytic solution to Eq. (1) can be derived:
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where (3,, is the solution to the equation

A

in the range [(n — 1)m, (n — 1/2)7] if aR/X < 1, and in the range [(n — 1/2)7, nx] if aR/\ > 1. Compare
the results of the two previous questions with this exact solution by plotting on the same graph the numerical
solution and the exact solution.

<aR—1>tanB+B:0 (5)

Electrostatic potential between conductors

We want to determine the electrostatic potential in a square of 1 meter long delimited by 4 conductors at fixed
electrostatic potential, see Fig. 1. We assume that the space between the conductors is empty.
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Figure 1: Electrostatic problem in vacuum to solve. An empty space is delimited by 4 conductors. Three of
them (in black) are at zero potential, the last one (in pink) is at a potential of 1 volt.

The BVP to solve is thus (with distances expressed in meters, and the potential expressed in volt):
0? 0?
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We want to compare the speed of resolution and the accuracy of different methods.
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Question 1: Solve Eq. (6) using the Jacobi method, and plot a heat map of the solution. How long does it take
for the method to converge?

Question 2: Solve Eq. (6) using the Gauss-Seidel method, and plot a heat map of the solution. How long does
it take for the method to converge?

Question 3: Solve Eq. (6) using the overrelaxation method, and plot a heat map of the solution. How long
does it take for the method to converge?

Question 4: The exact solution to Eq. (6) is known and reads:
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Compute the error between the numerical solutlon from the above three methods and the exact solution. Which
solution is a good compromise between computation time and accuracy?
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I1l. Free quantum particle

We want to describe the evolution of a free quantum particle of mass m in 1D initially described by a Gaussian
wave packet
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with k& = 27/X\, A = 5.107'm, and ¢ = 107'1%m. The evolution of the wavefunction v (x,) is given by the
time-dependent Schrddinger equation
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where the mass of the particle is m = 9.109.1073! kg. To avoid finite-size effects and to mimic the propagation
of the particle in infinite space, we adopt periodic boundary conditions for the wavefunction and we integrate
on a space domain [—L/2, L/2] with L chosen such that L >> o and such that the initial condition verifies the
periodic boundary conditions. We thus choose L = 108 m. We recall that i = 1.05457182.10~34 kg.m?/s.

Question 1: We want to solve the above IVP and BVP using a Crank-Nicolson scheme. We discretize space
and time as follows: z; = —L/2+ jé (j € [0, M] with M§ = L) and ¢, = nh (n € [0, N]).

a. Derive the recurrence relations between the gzﬁ}”“l's and the ¢7’s. Do not forget to enforce the boundary
condition.

b. Show that the recurrence relations can be recast into the linear system
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with A a M x M matrix and B a vector column of size M to be determined.

Question 2: Use the above scheme to solve the Schrédinger equation up to ¢ = 8.107'6s. You can take
h =210""%s and § = 5.107'2m. Plot the real part of the wavefunction for t = 2.10716s, ¢t = 4.107 165,
t=6.10"%s and t = 8.107 %5 on the same graph. Comment.

Question 3 (bonus): Solve Schrodinger equation for L = 5.107% m up to t; = 1.107 !0 s and plot the probability
density |¢(z,t;)|? at the end of the simulation. Confront with the exact solution
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and comment. You can do this for the following values of parameters:
» h=210"2sand 6 = 2.10 12 m;
» h=210"Ysand 6 =2.10 12 m;
» h=210"Ysand § =5.107 1% m;

» h=210"8sand 6 =5.10 12 m.

IV. Electrostatic potential in a salty solution

We want to determine the electrostatic potential in a solution in the vicinity of a charged wall of uniform charge
density o, see Fig. 2. We assume that the problem is translationally invariant in the z-direction and that the
system is closed by three conducting walls of length 1 meter maintained at zero electrostatic potential. The
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Figure 2: Electrostatic problem in a salty solution to solve. A solution with ions is delimited by 4 conductors.
Three of them (in black) are at zero potential, the last one (in pink) is charged with a uniform charge density o.

solution is a salty water solution containing positive ions of charge +¢q and negative ions of charge —¢, with
q = 1.602176634.10 ' C the elementary charge. The electrostatic potential now verifies a Poisson equation

P
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with g = 8.85418782.107'2 F /m the vacuum permittivity and ¢, = 80.10 the relative permittivity of water. The
charge density p depends on the potential itself via the Boltzmann distribution at temperature 7T":

p=pi+p, pr=tngqeTe? el (13)

with kg = 1.380649.10723 J /s the Boltzmann constant and ng the number of ions per unit volume. We are thus
left with the following BVP to solve:
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The above BVP is non-linear and we thus go step by step to find its solution numerically.

Question 1: We proceed similarly as in the lecture notes and we assume that the solution to the IVP and BVP
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converges to the solution to Eq. (14) when ¢ — 4o00. Derive the recurrence relation for the FTCS scheme to
solve Eq. (15) by discretizing space with a step size J in the z-direction and in the y-direction, and by discretizing
time with a step size h. Do not forget to enforce the boundary conditions.

Question 2: Implement the above FTCS scheme for ng = 101°m=3, ¢ = 1079 C/m?, and T = 350K (you
are generalizing the Jacobi method to a non-linear PDE!). You can take 6 = 5.1073m and you must choose a
small-enough time step h for the scheme to be stable. Integrate for IV time steps until the solution converges to
the stationary solution to Eq. (14) (you should give yourself a quantitative criterion to stop the iteration).

Question 3: Plot the heat map of the potential ¢, and of the absolute value of the charge densities |p|.
Comment.

Question 4: Repeat the resolution for ng = 105 m=2 and plot the heat maps of ¢ and |p+|. Confront with the
result of the previous question and comment.
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