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TUTORIAL: INTEGRATION OF PARTIAL DIFFERENTIAL
EQUATIONS

I. Cooling of a ball

We consider a ball of radius R. At t = 0, we take it out of a oven where it was at uniform temperature Ti and
we suspend it in the air at temperature Ta. We assume that the temperature field T in the ball is isotropic (i.e.,
it only depends on r in spherical coordinates and on t). Under this assumption, the temperature profile verifies
the following IVP and BVP 
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(R, t) = α [T (R, t)− Ta] ,

(1)

whereD is the diffusion coefficient in the ball, λ its thermal conductivity, and α the Newton convection coefficient.

Question 1: We define θ = T − Ta, x = r/R, τ = Dt/R2 and c = αR/λ. Show that Eq. (1) becomes
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θ(x, 0) = Ti − Ta,

∂θ

∂x
(1, τ) = −c θ(1, τ).

(2)

Question 2: We want to solve the above IVP and BVP using a FTCS scheme. We discretize space and time as
follows: xj = jδ (j ∈ J0, MK with Mδ = 1) and τn = nh (n ∈ J0, NK).

a. Derive the recurrence relation between θn+1
j and the θnj ’s for j ≥ 1. Do not forget to enforce the boundary

condition.

b. For j = 0, the recurrence relation reads (the derivation of this formula is not required):

θn+1
0 = θn0 +

6h

δ2
(θn1 − θn0 ) . (3)

Implement the FTCS scheme.

Question 3: We perform an experiment with a ball made of granite, for which λ = 3W/m/K, D =
1.6.10−6m2/s and R = 10 cm. Initially, the ball is at temperature Ti = 800◦C, while the air is at temper-
ature Ta = 20◦C. We take the Newton convection coefficient α = 20W/m2/K. Integrate the PDE numerically
and plot the temperature profile T (r, t) [not θ(x, τ)!] at different times between 0 and 2 hours on the same
graph. Comment.

Question 4: We reproduce the experiment with a ball made of gold, for which λ = 315W/m/K, D =
1.3.10−4m2/s and R = 10 cm. Integrate the PDE numerically, plot the temperature profile T (r, t) at different
times between 0 and 2 hours on the same graph, and confront with the previous experiment.
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Question 5 (bonus): The exact analytic solution to Eq. (1) can be derived:

T (r, t) = Ta +
2αR2(Ti − Ta)
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+∞∑
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where βn is the solution to the equation (
αR

λ
− 1

)
tanβ + β = 0 (5)

in the range [(n − 1)π, (n − 1/2)π] if αR/λ < 1, and in the range [(n − 1/2)π, nπ] if αR/λ > 1. Compare
the results of the two previous questions with this exact solution by plotting on the same graph the numerical
solution and the exact solution.

II. Electrostatic potential between conductors

We want to determine the electrostatic potential in a square of 1 meter long delimited by 4 conductors at fixed
electrostatic potential, see Fig. 1. We assume that the space between the conductors is empty.

ϕ = 1V

ϕ = 0V

Figure 1: Electrostatic problem in vacuum to solve. An empty space is delimited by 4 conductors. Three of
them (in black) are at zero potential, the last one (in pink) is at a potential of 1 volt.

The BVP to solve is thus (with distances expressed in meters, and the potential expressed in volt):

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, ϕ(0, y) = 0, ϕ(1, y) = 0, ϕ(x, 0) = 0, ϕ(x, 1) = 1. (6)

We want to compare the speed of resolution and the accuracy of different methods.

Question 1: Solve Eq. (6) using the Jacobi method, and plot a heat map of the solution. How long does it take
for the method to converge?

Question 2: Solve Eq. (6) using the Gauss-Seidel method, and plot a heat map of the solution. How long does
it take for the method to converge?

Question 3: Solve Eq. (6) using the overrelaxation method, and plot a heat map of the solution. How long
does it take for the method to converge?

Question 4: The exact solution to Eq. (6) is known and reads:

ϕ(x, y) =
4

π

+∞∑
m=0

sin[(2m+ 1)πx] sinh[(2m+ 1)πy]

(2m+ 1) sinh[(2m+ 1)π]
. (7)

Compute the error between the numerical solution from the above three methods and the exact solution. Which
solution is a good compromise between computation time and accuracy?

2



Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

III. Free quantum particle

We want to describe the evolution of a free quantum particle of mass m in 1D initially described by a Gaussian
wave packet

ψ(x, 0) =
1

π1/4
√
σ
e−x2/(2σ2)eikx, (8)

with k = 2π/λ, λ = 5.10−11m, and σ = 10−10m. The evolution of the wavefunction ψ(x, t) is given by the
time-dependent Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
, (9)

where the mass of the particle is m = 9.109.10−31 kg. To avoid finite-size effects and to mimic the propagation
of the particle in infinite space, we adopt periodic boundary conditions for the wavefunction and we integrate
on a space domain [−L/2, L/2] with L chosen such that L≫ σ and such that the initial condition verifies the
periodic boundary conditions. We thus choose L = 10−8m. We recall that ℏ = 1.05457182.10−34 kg.m2/s.

Question 1: We want to solve the above IVP and BVP using a Crank-Nicolson scheme. We discretize space
and time as follows: xj = −L/2 + jδ (j ∈ J0, MK with Mδ = L) and tn = nh (n ∈ J0, NK).

a. Derive the recurrence relations between the ϕn+1
j ’s and the ϕnj ’s. Do not forget to enforce the boundary

condition.

b. Show that the recurrence relations can be recast into the linear system

AΦ = B, with Φ =

ϕn+1
0
...

ϕn+1
M−1

 , (10)

with A a M ×M matrix and B a vector column of size M to be determined.

Question 2: Use the above scheme to solve the Schrödinger equation up to tf = 8.10−16 s. You can take
h = 2.10−18 s and δ = 5.10−12m. Plot the real part of the wavefunction for t = 2.10−16 s, t = 4.10−16 s,
t = 6.10−16 s and t = 8.10−16 s on the same graph. Comment.

Question 3 (bonus): Solve Schrödinger equation for L = 5.10−9m up to tf = 1.10−16 s and plot the probability
density |ψ(x, tf)|2 at the end of the simulation. Confront with the exact solution

|ψ(x, t)|2 = 1√
πς(t)

e−x2/ς(t)2 , ς(t) = σ

√
1 +

(
ℏt
mσ2

)2

(11)

and comment. You can do this for the following values of parameters:

▶ h = 2.10−20 s and δ = 2.10−12m;

▶ h = 2.10−19 s and δ = 2.10−12m;

▶ h = 2.10−19 s and δ = 5.10−12m;

▶ h = 2.10−18 s and δ = 5.10−12m.

IV. Electrostatic potential in a salty solution

We want to determine the electrostatic potential in a solution in the vicinity of a charged wall of uniform charge
density σ, see Fig. 2. We assume that the problem is translationally invariant in the z-direction and that the
system is closed by three conducting walls of length 1 meter maintained at zero electrostatic potential. The
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Figure 2: Electrostatic problem in a salty solution to solve. A solution with ions is delimited by 4 conductors.
Three of them (in black) are at zero potential, the last one (in pink) is charged with a uniform charge density σ.

solution is a salty water solution containing positive ions of charge +q and negative ions of charge −q, with
q = 1.602176634.10−19C the elementary charge. The electrostatic potential now verifies a Poisson equation

∆ϕ = − ρ

ϵ0ϵr
, (12)

with ϵ0 = 8.85418782.10−12 F/m the vacuum permittivity and ϵr = 80.10 the relative permittivity of water. The
charge density ρ depends on the potential itself via the Boltzmann distribution at temperature T :

ρ = ρ+ + ρ−, ρ± = ±n0q e∓eϕ/(kBT ), (13)

with kB = 1.380649.10−23 J/s the Boltzmann constant and n0 the number of ions per unit volume. We are thus
left with the following BVP to solve:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=

2qn0
ϵ0ϵr

sinh

(
qϕ
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)
,

∂ϕ

∂x
(0, y) = − σ

ϵ0ϵr
, ϕ(1, y) = 0, ϕ(x, 0) = 0, ϕ(x, 1) = 0. (14)

The above BVP is non-linear and we thus go step by step to find its solution numerically.

Question 1: We proceed similarly as in the lecture notes and we assume that the solution to the IVP and BVP
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=
∂2ϕ

∂x2
+
∂2ϕ

∂y2
− 2qn0

ϵ0ϵr
sinh

(
qϕ

kBT

)
(15)

converges to the solution to Eq. (14) when t → +∞. Derive the recurrence relation for the FTCS scheme to
solve Eq. (15) by discretizing space with a step size δ in the x-direction and in the y-direction, and by discretizing
time with a step size h. Do not forget to enforce the boundary conditions.

Question 2: Implement the above FTCS scheme for n0 = 1010m−3, σ = 10−9C/m2, and T = 350K (you
are generalizing the Jacobi method to a non-linear PDE!). You can take δ = 5.10−3m and you must choose a
small-enough time step h for the scheme to be stable. Integrate for N time steps until the solution converges to
the stationary solution to Eq. (14) (you should give yourself a quantitative criterion to stop the iteration).

Question 3: Plot the heat map of the potential ϕ, and of the absolute value of the charge densities |ρ±|.
Comment.

Question 4: Repeat the resolution for n0 = 108m−3 and plot the heat maps of ϕ and |ρ±|. Confront with the
result of the previous question and comment.
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