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TUTORIAL: MONTE CARLO METHODS

I. Simulation of two repulsive particles in a harmonic potential

We consider two particles 1 and 2 of equal mass m in a one-dimensional harmonic potential of stiffness κ at
temperature T . The two particles also interact repulsively with a typical interaction strength γ. The Hamiltonian
of the system reads

H =
p21
2m
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p22
2m

+
1

2
κ
(
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)
− γ|x1 − x2|. (1)

The first two terms stand for the kinetic energy (with pa the momentum of particle a), the third term corresponds
to the quadratic potential energy of each particle, the fourth term is the interaction potential between the two
particles which depends on their relative distance.
Integrating over the momentum degrees of freedom, the Boltzmann distribution gives the joint probability dis-
tribution density of the positions (x1, x2) of the two particles:
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with Z the normalization constant. After some algebra (try it at home, this is a good statistical mechanics
exercise!), we can prove that ⟨x1⟩ = ⟨x2⟩ = 0 while
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In particular, when γ = 0, we recover the equipartition theorem (⟨x21⟩ = ⟨x22⟩ = kBT/κ).

We want to use the Metropolis algorithm to sample this distribution. We propose the following Markov chain:

1. Pick at random one of the two particles.

2. Propose a new trial position ya for the chosen particle a by randomly shifting its current position xa by a
random number between −ϵ and ϵ.

3. Accept or reject this trial position following Metropolis procedure.

For the simulations, we set m = 1, κ = 1 and kB = 1 (rescaled units).

Question 1: Implement the above Markov chain. You can choose (x1, x2) = (0, 0) to initiate the chain.

Question 2: We start with γ = 0.

a. For several values of T ∈ [0.2, 2] and for several values of ϵ ∈ [1, 10], perform N = 10000 steps and
compute the average acceptance rate of trial moves. For each temperature, plot the acceptance rate as a
function of ϵ and display all curves on the same graph. How should you choose ϵ such that the acceptance
rate is roughly between 20% and 50% for all temperatures?

b. For several values of T ∈ [0, 2], perform N = 100000 steps and plot the time series of the energy V (x1, x2).
How should you choose the number of steps Nb−i in the burn-in phase?

c. For the same simulations, compute the correlation function of x1 in the equilibrium phase and plot the
curve. Estimate the number of steps Ncorr over which the samples are correlated. How should you choose
the number of steps Neq in the equilibrium phase?
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d. For several values of T ∈ [0.2, 2], compute the variance of x1 in the equilibrium phase and plot ⟨x21⟩ as a
function of T . Is the equipartition theorem verified?

Question 3: We now study the case γ = 1.0 (in rescaled units).

a. For T = 0.2, perform N = 10000 steps and plot the time series of x1 and x2. What do you observe? Can
you rationalize this behavior? How should you choose the number of steps Nb−i in the burn-in phase?

b. For the same temperature, perform N = 100000 steps, compute the correlation function of x1 in the
equilibrium phase and plot it. How should you choose the number of steps Neq in the equilibrium phase?
Compare with the case γ = 0.

c. For several values of T ∈ [0, 2], compute the variance of x1 in the equilibrium phase and plot ⟨x21⟩ as a
function of T . Check that Eq. (3) is verified.

II. Monte Carlo integration

Question 1: Compute the volume of the unit ball (the set of vectors of norm smaller or equal than 1) in D
dimensions using a Monte Carlo integration. Compare with the exact results 4π/3 and π5/120 for D = 3 and
D = 10 respectively.

Question 2: We now want to compute numerically the integral

I =

ˆ 1

0

(
1

x1/3
+

x

10

)
dx. (4)

Its exact value is 31/20.

a. Compute the integral using a Monte Carlo integration with the uniform distribution for N = 100, N = 1000
and N = 10000 samples. For each value of N , you can do the calculation 20 times and average the result.
Plot |I − 31/20| as a function of N . Comment on the accuracy of the method as a function of N .

b. We want to perform another Monte Carlo integration using the probability distribution density p(x) =
2/(3x1/3) of support I = [0, 1[. Plot the functions p(x) and f(x) = 1/x1/3 + x/10 on the same graph.
Justify the choice of p(x) (importance sampling).

c. Generate random numbers following the distribution p(x) using the inverse transform sampling.

d. From the set of N random numbers obtained in the previous question, compute an estimate of I for
N = 100, N = 1000 and N = 10000 samples (you can do the calculation 20 times and again average the
result). Plot |I − 31/20| as a function of N . Comment on the accuracy of the method.

III. The best concert tour

A band wants to make a concert tour in France and has selected 13 cities among the biggest in Metropolitan
France. The group wants to start from Paris, perform only once in each city and come back to Paris eventually.
Because of ecological concerns, the band wants to travel the least number of kilometers. The geographical
coordinates of the 13 French cities where they want to perform are listed in the array below. We recall that
on Earth, given two locations of coordinates (λ1, ϕ1) and (λ2, ϕ2) (with λa the longitudes measuring the W/E
deviation from the Greenwich Meridian and ϕa the latitudes measuring the N/S deviation from the Equator),
their relative distance reads

d12 = R arccos [cosϕ1 cosϕ2 cos(λ1 − λ2) + sinϕ1 sinϕ2] , (5)

with R = 6371 km the average radius of the Earth.
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City Longitude (O/E) λ Latitude (N/S) ϕ

Paris 2◦ 21′ 07′′ (E) 48◦ 51′ 24′′ (N)
Lyon 4◦ 49′ 56′′ (E) 45◦ 45′ 28′′ (N)

Toulouse 1◦ 26′ 38′′ (E) 43◦ 36′ 16′′ (N)
Nice 7◦ 16′ 17′′ (E) 43◦ 41′ 45′′ (N)

Nantes 1◦ 33′ 10′′ (O) 47◦ 13′ 05′′ (N)
Montpellier 3◦ 52′ 38′′ (E) 43◦ 36′ 43′′ (N)
Strasbourg 7◦ 45′ 08′′ (E) 48◦ 34′ 24′′ (N)
Bordeaux 0◦ 34′ 46′′ (O) 44◦ 50′ 16′′ (N)

Lille 3◦ 03′ 48′′ (E) 50◦ 38′ 14′′ (N)
Le Havre 0◦ 06′ 00′′ (E) 49◦ 29′ 24′′ (N)

Clermont-Ferrand 3◦ 04′ 56′′ (E) 45◦ 46′ 33′′ (N)
Limoges 1◦ 15′ 00′′ (E) 45◦ 51′ 00′′ (N)
Orléans 1◦ 54′ 32′′ (E) 47◦ 54′ 09′′ (N)

Table 1: Geographical coordinates of the 13 French cities chosen by a band for their French concert
tour. The longitudes λ and latitudes ϕ are given in degrees (◦), minutes (′) and seconds (′′). We recall that
1◦ = 60′ = 3600′′.

A direct brute-force test of the 12! = 479001600 possible paths takes about 30 minutes to converge and shows
that the smallest tour is: Paris → Orléans → Limoges → Clermont-Ferrand → Lyon → Nice → Montpellier →
Toulouse → Bordeaux → Nantes → Le Havre → Lille → Strasbourg → Paris. The objective of this exercise is
to find circuits which minimize the total length travelled using a simulated annealing algorithm.

Question 1: Start from the Python code band_circuit.py and construct the n × n symmetric matrix dij of
all distances between cities i and j (with n the number of cities).

Question 2: We propose the following simulated annealing scheme. We start from a random circuit connecting
all cities once, starting from Paris and coming back to Paris. At each step, we propose the following procedure:

1. Try to swap two cities in the path except Paris and compute the new length of the circuit.

2. Accept and reject the new trial path following the Metropolis criterion assuming that the probability of a
path of total length d is ∝ e−d/T (with T the temperature).

3. Update the temperature T by decreasing it by a factor ∆ at each step.

The simulated annealing scheme starts with an initial temperature Ti and ends with a final temperature Tf .
Implement the above procedure.

Question 3: The performance of the algorithm depends on the annealing rate ∆. For Ti = 100 and Tf = 10−5,
run the algorithm 20 times for values of ∆ = 10−1, 10−2, 10−3, 10−4, 10−5 and compute the average length
of the optimal path. How does it depend on ∆? Compare the average lengths obtained with the length of the
smallest tour described above.

Question 4: Plot the entire path at the end of the simulated annealing procedure. Is the simulated annealing
algorithm able to find the minimal path?

IV. Parameter inference from experimental data

We are interested in biological data on blood types, see the array below. The observed blood types A, B, AB or
O (phenotype) depend on the pair of two alleles of the genotype and on their dominance properties. We want to
estimate the probabilities pA, pB and pO that an allele is represented in the population (where pA+pB+pO = 1).
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Genotype Probability Phenotype Number of observed phenotypes
AA p2A A NA = 186
AO 2pApO
BB p2B B NB = 38
BO 2pBpO
AB 2pApB AB NAB = 13

OO p2O O NO = 284

Table 2: Results from a biology experiment. The blood types of N = 521 people and their corresponding
genotype are reported.

Given the allele probabilities pA, pB, pO, the probability to observe such values of NA, NB, NAB and NO are
given by a multinomial distribution:

P (NA, NB, NAB, NO) =
N !

NA!NB!NAB!NO!
(p2A + 2pApO)

NA(p2B + 2pBpO)
NB(2pApB)

NABp2NO
O , (6)

with N = NA + NB + NAB + NO. To estimate the allele probabilities, we propose to maximise the above
probability with respect to pA, pB and pO, which amounts to maximizing the following likelihood

L(pA, pB, pO) = NA ln(p2A + 2pApO) +NB ln(p2B + 2pBpO) +NAB ln(pApB) + 2NO ln(pO) (7)

with the constraint pA + pB + pO = 1.
A direct calculation using a Lagrange multiplier to enforce the above constraint leads to tedious algebra and
multiple solutions. We instead propose an algorithm to find the maximum. We introduce the two hidden
variables ZA and ZB corresponding to the number of allele pairs (A,A) and (B,B) respectively. Given ZA and
ZB, the new likelihood to maximize reads

L′(pA, pB, pO;ZA, ZB) = 2ZA ln(pA) + (NA − ZA) ln(2pApO) + 2ZB ln(pB) + (NB − ZB) ln(2pBpO)

+NAB ln(pApB) + 2NO ln(pO).
(8)

By construction ZA is a random variable which follows a binomial distribution of parameters NA (number of
trials) and p2A/(p

2
A + 2pApO) [relative probability to observe a pair of alleles (A,A)]. Similarly, ZB follows a

binomial distribution of parameters NB and p2B/(p
2
B + 2pBpO).

We propose the following Expectation–Maximization algorithm to find the allele probabilities, starting from
random values of pA, pB and pO.

1. At step n, for the estimated values p
(n)
A , p(n)B and p

(n)
O of the allele probabilities, compute the average of

L′ with respect to ZA and ZB. We denote this average Lavg(pA, pB, pO).

2. Update the allele probabilities by setting their values at step n+ 1 to the location of the maximum of the
average of Lavg computed before:

(p
(n+1)
A , p

(n+1)
B , p

(n+1)
O ) = argmax(pA, pB, pO)Lavg(pA, pB, pO). (9)

3. Stop the algorithm when you reach fixed points for the allele probabilities, namely, when the relative change
of the probabilities between two steps is smaller than a given threshold ϵ. If such a criterion cannot be
met, stop the algorithm after a given number of steps.

Question 1: Implement the function Lavg(pA, pB, pO). You can simplify its expression using pen and paper
before coding it, or you can simply generate samples of ZA and ZB following binomial distributions.

Question 2: Implement the part of the algorithm which finds the location of the maximum of Lavg. You can
first use pen and paper to find its expression before coding it, or you can directly use optimization routines
implemented in Python.

Question 3: Find the best estimates of pA, pB and pO using the above algorithm.
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